# Posts by Collection

## conferences

## portfolio

## Portfolio item number 1

Short description of portfolio item number 1

## Portfolio item number 2

Short description of portfolio item number 2

## publications

## Congruence lattices of finite diagram monoids

Published in *Advances in Mathematics*, 2018

We give a complete description of the congruence lattices of the following finite diagram monoids: the partition monoid, the planar partition monoid, the Brauer monoid, the Jones monoid (also known as the Temperley–Lieb monoid), the Motzkin monoid, and the partial Brauer monoid. All the congruences under discussion arise as special instances of a new construction, involving an ideal $I$, a retraction $I \to M$ onto the minimal ideal, a congruence on $M$, and a normal subgroup of a maximal subgroup outside $I$.

Recommended citation: J. East, J. D. Mitchell, N. Ruškuc and M. Torpey. **Congruence lattices of finite diagram monoids**, *Advances in Mathematics* **333** (Jul 2018) 931–1003. __https://doi.org/10.1016/j.aim.2018.05.016__

## talks

## The Low-Index Subgroups Algorithm Permalink

** Published:**

## Computing with Semigroup Congruences Permalink

** Published:**

## Computing with Semigroup Congruences Permalink

** Published:**

## Computing with Semigroup Congruences Permalink

** Published:**

## Semilattice Congruences Permalink

** Published:**

## Inverse Semigroups Permalink

** Published:**

## Computing with Semigroup Congruences Permalink

** Published:**

## Dolphin Semigroups Permalink

** Published:**

## Finitely Presented Semigroups Permalink

** Published:**

## Diagram Semigroups Permalink

** Published:**

## Introduction to Algebra Permalink

** Published:**

## An Introduction to GAP Permalink

** Published:**

## Congruences of the Partition Monoid Permalink

** Published:**

## Diagram Semigroups Permalink

** Published:**

## An Introduction to GAP Permalink

** Published:**

## Writing a thesis Permalink

** Published:**

## Package management in GAP

** Published:**

## How to win at board games Permalink

** Published:**

## Memoisation and pypersist Permalink

** Published:**

## teaching

## Teaching experience 1

Undergraduate course, *University 1, Department*, 2014

This is a description of a teaching experience. You can use markdown like any other post.

## Teaching experience 2

Workshop, *University 1, Department*, 2015

This is a description of a teaching experience. You can use markdown like any other post.